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Abstract1

Initial conditions for flows and depths (cross-sectional areas) throughout a river network are2

required for any time-marching (unsteady) solution of the one-dimensional (1D) hydrodynamic3

Saint-Venant equations. For a river network modeled with several Strahler orders of tributaries,4

comprehensive and consistent synoptic data are typically lacking and synthetic starting con-5

ditions are needed. Because of underlying nonlinearity, poorly-defined or inconsistent initial6

conditions can lead to convergence problems and long spin-up times in an unsteady solver. Two7

new approaches are defined and demonstrated herein for computing flows and cross-sectional ar-8

eas (or depths). These methods can produce an initial condition data set that is consistent with9

modeled landscape runoff and river geometry boundary conditions at the initial time. These new10

methods are: (1) the Pseudo-Time-Marching Method (PTM) that iterates toward a steady-state11

initial condition using an unsteady Saint-Venant solver, and (2) the Steady-Solution Method12
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(SSM) that makes use of graph theory for initial flow rates and solution of a steady-state 1D13

momentum equation for the channel cross-sectional areas. The PTM is shown to be adequate14

for short river reaches, but is significantly slower and has occasional non-convergent behavior15

for large river networks. The SSM approach is shown to provide rapid solution of consistent16

initial conditions for both small and large networks, albeit with the requirement that additional17

code must be written rather than applying an existing unsteady Saint-Venant solver.18

19

Keywords: Flood modeling, One-dimensional models, River channels, Streams and rivers Initial20

condition, Model spin up21

22

1 Introduction23

1.1 Motivation24

Setting initial conditions for unsteady simulations of the Saint-Venant equations (SVE) across25

large river networks can be challenging. Every element of the river network must be given26

initial values of flow and depth, and these values should be consistent with the inflow boundary27

conditions (e.g. from a land surface model) at the starting time to prevent instabilities. This28

issue has not been previously addressed in the literature, arguably because it is essentially trivial29

for the simple SVE systems that are usually modeled.30

Saint-Venant equation modeling arguably dates from Priessmann’s seminal work (Preiss-31

mann, 1961; Preissmann and Cunge, 1961), followed by decades of advances in techniques and32

applications (Cunge, 1974; Ponce et al., 1978; Cunge et al., 1980; Abbott et al., 1986; Zhao33

et al., 1996; Sanders, 2001; Pramanik et al., 2010). These models focused on hydraulics of short34

river reaches or main stem rivers that are easy to initialize for flow and depth. It is only re-35

cently that the solvers for large river networks have become practical (Hodges, 2013; Liu and36

Hodges, 2014), and it is with large networks that the initial conditions are problematic. In-37

deed, initial conditions and associated spin-up problems have been recently acknowledged and38

investigated for hydrological models (e.g. Ajami et al., 2014), but without consideration of a39

separate river network model. Work by Seck et al. (2015) and Rahman and Lu (2015) show that40

hydrological model spin-up computational times could be significant and were dominated by the41

selected initial hydrological conditions. (The spin-up time is the time it takes for the unsteady42

time-marching model results to be insensitive to perturbations of the initial conditions).43

Our experience with river network modeling is that simple approaches to initial conditions44

often cause localized numerical instabilities, slow convergence of numerical solvers, and long45

model spin-up times. Herein, we investigate the initial condition problem for a river network46
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model for a given set of inflows from a hydrological model.47

1.2 Consistency of initial conditions48

The “perfect” initial conditions with zero spin-up time would require flows and depths con-49

sistent with (i) the actual unsteady behavior prior to the model start time and (ii) the model50

boundary conditions – the latter includes both the bathymetric model for the river channels and51

the coupled hydrological model providing runoff and base flows. However, such perfect initial52

conditions are likely unattainable due to the sparsity of synoptic flow/depth data as well as53

unavoidable uncertainty and errors in both bathymetric and hydrological models. A key point54

is that the exact observed river initial conditions (if such were available throughout a network)55

will not eliminate spin-up time if the observed data are inconsistent with the model boundary56

conditions. Indeed, inconsistency between the river network model initial conditions and the57

boundary conditions from a coupled hydrological model can lead to unrealistic impulses in time-58

marching the SVE solution, which can destabilize a model. An extreme example is a high runoff59

rate into an almost dry stream that can cause a Gibbs phenomenon at a wave front and negative60

values for the computed cross-sectional area (Lax, 2006; Kvočka et al., 2015; Yang et al., 2012).61

Although there are several models and studies claim that the numerical discontinuities can be62

captured and resolved (Kazolea and Delis, 2013; Caleffi et al., 2003; Liang et al., 2006), the high63

computational cost is still a burden for river models (Kvočka et al., 2015). We argue that the64

primary goal of a set of synthetic initial conditions is providing consistency with the boundary65

conditions to allow a smooth, convergent startup of an unsteady solver. Model spin-up time66

is only completed when the river flows/depths are entirely determined by the flows from the67

hydrological model, thus the observed flows/depths (which can slow the unsteady solver con-68

vergence) are less valuable than a consistent set of flows/depths that provide a smooth starting69

point.70

1.3 Initial condition approaches71

Approaches for specifying initial conditions for the SVE can be grouped into three main cate-72

gories: (i) a “synoptic start” applying an interpolated/extrapolated set of sparse observational73

data, (ii) a “cold start” with initial flow rates and flow depths prescribed either as zero (e.g.74

Chau and Lee, 1991) or from some analytical values, e.g. mean annual flows and depths, and75

(iii) a “steady-state” start, which we describe herein. The metric for evaluating initial condi-76

tions is not how well they reflect available real-world observations, but how effective they are in77

efficiently providing a consistent set of initial conditions.78

As noted above, the first approach (synoptic start) is unlikely to be efficient for SVE ini-79

tial conditions in a large river network due to inconsistencies between observations and model80
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boundary conditions as well as inconsistencies caused by interpolating/extrapolating sparse ob-81

servations throughout a network. There are no proven approaches to analyzing consistency and82

melding observations to hydrological model runoff, so the river network model spin-up will be83

subject to random inconsistencies and instabilities that can delay or prevent convergence.84

The second approach, a cold start, can provide smooth consistency over the river network85

by using mean annual flows and depths (e.g. from the NHDplus data in the USA). Although86

such cold start initial conditions are internally consistent, they may be far from the flows/depths87

implied by the initial hydrological forcing. As a result, a cold start can require extensive spin-up88

time to dilute or wash out the error. Using a cold start approach, the spin-up time dominated89

the computational time for the large SVE networks we previously modeled in Liu and Hodges90

(2014).91

Herein we investigate the third approach, steady-state initial conditions, as a preferred for92

initializing a large river network model. With this idea, a set of consistent initial conditions is one93

that satisfies both the t = 0 hydrological forcing and the steady-state Saint-Venant equations94

at t = 0. Although a river system is unlikely to be steady-state, we argue that the initial95

conditions are always a compromise and the end goal is to reduce the spin-up time rather than96

match reality. This approach has the advantage of providing flows and depths that are consistent97

across the entire network with all the boundary conditions (inflows and channel geometry) as98

well as the nonlinear governing equations. This consistency eliminates destabilizing impulses99

otherwise caused by mismatches between the flow/depth in a river reach and the runoff, so100

subsequent time-marching of the unsteady solution is smooth. This approach can dramatically101

reduce the subsequent spin-up time for the unsteady solution.102

1.4 Overview103

Herein we present an efficient approach to establishing a set of steady-state conditions that104

provides a consistent and smooth starting point for time-marching an unsteady Saint-Venant105

simulation. A full model initialization problem has two parts: (i) determine a set of flows and106

water surface elevations that are consistent steady solutions of the SVE for starting an unsteady107

solver, and (ii) determine the spin-up time needed to ensure error in the initial conditions are108

washed out of the unsteady solution. The second problem is highly dependent on the network109

characteristics and the particular flow and boundary conditions during spin-up, so for brevity,110

this work deals quantitatively with solving the first problem, and then illustrates the effects on111

the second problem.112
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2 Methods113

2.1 Saint-Venant equations114

The Saint-Venant equations for temporal (t) evolution of flow and water surface elevation along115

one spatial dimension (x) following a river channel are generally derived using the hydrostatic116

and Bousinesq approximations applied to the incompressible Navier-Stokes and continuity equa-117

tions. Cross-section averaging to obtain the 1D equations is considered reasonable where cross-118

sectional gradients are smaller than along-channel gradients. However, the equations are widely119

used even where such assumptions are questionable (e.g. near a bridge with multiple immersed120

piers), with the effects of significant cross-section gradients or non-hydrostatic behavior being121

represented as empirical energy losses. A number of conservative and non-conservative equation122

forms have been used, with different advantages and disadvantages (Hodges and Liu, 2014).123

Herein we follow Liu and Hodges (2014) in using cross-sectional area (A) and flow rate (Q) as124

principle solution variables of the numerical system and the local water depth (h) and friction125

slope (Sf ) as a secondary variables (i.e. variables that depend on A and Q through auxiliary126

relationships). The equation set can be written as:127

∂A

∂t
+
∂Q

∂x
= ql (1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
= gA(S0 − Sf ) (2)

where boundary conditions are the local channel bottom slope (S0) and the local lateral net128

inflow (ql), the latter representing both inflows from the landscape and outflows to groundwater.129

Auxiliary equations for h = h(A) are derived from river cross-section data. The Chezy-Manning130

equation can be used to provide the friction slope as:131

ASf = ñ2Q2F (3)

where ñ is the standard Manning’s n roughness coefficient and F is a convenient equivalent132

friction geometry (Liu and Hodges, 2014), which subsumes the conventional hydraulic radius133

(Rh) using a definition of134

F =
1

AR
4/3
h

=
(
P 4

A7

)1/3

(4)

with P = P (A) is the wetted perimeter and Rh = AP−1. Note that eq. (4) fixes a typo-135

graphical error in eq. (10) of Liu and Hodges (2014) and eq. (3.55) of Hodges and Liu (2014).136

Required boundary conditions for the unsteady Saint-Venant solution are ql(t) for each stream137

5

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-113, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 3 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



segment, Qbc(t) at the furthest upstream node (headwater) in river branches with a Strahler138

order of one, and h with an h(A) relationship at the downstream boundary (assumed subcriti-139

cal). The time-marching unsteady solution requires initial conditions for (Q,A), which can also140

be given as (Q, h) with A = A(h). Implementation details of the unsteady solver used herein141

can be found in Liu and Hodges (2014) and Liu (2014).142

2.2 Pseudo time-marching approach143

The most obvious approach for finding steady-state initial conditions is to time-march an un-144

steady solver until a steady state is achieved. That is, we apply the unsteady solver with145

time-invariant boundary conditions of ql(t) = ql(0) and Qbc(t) = Qbc(0) for t0 ≤ t < 0 where146

t0 is our pseudo-time start and t = 0 is the time for which we want a set of initial conditions.147

We call this the “pseudo time-marching method” (PTM). The initial condition for PTM is a set148

of Q(t0) and A(t0) for each stream segment (e.g. cold start conditions as described above). At149

first glance, the logic here might seem circular: we are trying to solve for initial condition set150

{Q(0), A(0)} of the unsteady model and PTM requires specifying {Q(t0), A(t0)}. This begs the151

question as to why PTM should be used rather than simply apply a cold start of the unsteady152

solver with Q(0) = Q(t0) and A(0) = A(t0). The answer is that the key difference between the153

PTM using Q(t0) and A(t0) and a cold start of the unsteady solver with the same values is that154

the former has time-invariant boundary conditions while the latter’s are time-varying. Thus, an155

unsteady solver with time-varying boundary conditions is trying to take an inconsistent start-156

ing condition and converge it to a moving target. In contrast, the PTM takes the inconsistent157

starting conditions and attempts to converge them to a time-invariant target, which is more158

likely to be successful.159

The PTM is outlined as Algorithm 1. A user-selected parameter (ε) is used as a threshold160

tolerance value for declaring convergence to the steady state. A typical choice of the tolerance ε is161

the square root of the computer hardware tolerance. For example, on a 64-bit Intel architecture,162

the hardware tolerance for a double precision floating point floating number is 2.2204× 10−16,163

which means a good choice of ε is 1.4901× 10−8. As a practical matter, ε of 10−6 or even 10−4
164

is likely to be sufficient for initial conditions; that is, as further spin-up time is still required to165

dilute initial condition errors the convergence needs only to be sufficient for consistency across166

the network. The method can use a time-step size that is either constant or varying, with an167

automatic reduction in step size when convergence is not achieved in a given time step (Liu and168

Hodges, 2014). To avoid infinite runtimes for non-convergent behavior (e.g. due to instabilities169

developed with inconsistent starting conditions), the solution is terminated (failure to converge)170

in Algorithm 1 after a user-selected Nmax iterations. The starting conditions for {Q(t0), A(t0)}171

are discussed in Appendix A.172
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Algorithm 1 Pseudo Time-Marching Method
1: procedure PseudoTimeMarching(Aini, Qini, ε, Nmax) . Aini,Qini: initial guesses of A

and Q; ε: tolerance; Nmax: maximal iteration number

2: A← Aini

3: Q← Qini

4: i← 0

5: t0 ← 0

6: for i = 1 to Nmax do

7: Solve SVE at time point ti using unsteady method

8: Compute error: e← |Qt −Qt−1|+ |At −At−1|
9: if e < ε then

10: return Success

11: end if

12: ti+1 ← ti + ∆ti

13: i← i+ 1

14: end for

15: return Failure

16: end procedure

7

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-113, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 3 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



2.3 Steady-solution method173

The PTM approach (above) results in a steady solution of the unsteady Saint-Venant equations174

that satisfies both momentum and continuity for time-invariant ql(0) and Qbc(0) boundary175

conditions in the unsteady solver. However, we can achieve a similar effect more directly by176

writing a steady-state version of the Saint-Venant equations as:177

∂Q

∂x
= ql (5)

∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
= gA(S0 − Sf ) (6)

A key point, implied by eq. (5), is that the spatial gradient of steady-state Q over a stream178

segment is entirely due to the lateral inflow (ql) without any influence of A. It follows that for179

steady ql and Qbc boundary conditions, the flow in the ith river segment (Qi) that has Strahler180

order Si must be the sum of all the Qj for all the j connected reaches of Strahler order Sj < Si.181

That is, the steady flow at any point is simply the sum of all the upstream t = 0 boundary182

conditions. Thus, the steady-state Q can be obtained (without solving a PDE) through a simple183

graph traversal technique. The corresponding A (and hence depth h) can then be computed with184

a numerical PDE solution of eq. (6). Note that for large river networks, the natural downstream185

boundary condition is subcritical, which requires specification of h and the corresponding A as186

the starting point. We call this a “steady-solution method” (SSM).187

For river networks with simple junctions, such as Fig. 1, the flow direction in each segment is188

known a priori and the network corresponds to a “direct acyclic graph”, or DAG, in graph theory189

(Hodges and Liu, 2014). Although DAG systems allow both upstream and downstream splitting190

(e.g. two paths around an island), it does not allow flow directions that create a recirculating191

loop, which is consistent with water flow that cannot loop around to return to an upstream192

point. The connectivity of a DAG can be efficiently computed by applying existing graph193

methods, such as depth-first-search (DFS) or breadth-first-search (BFS), which provide simple194

and efficient approaches to computing Q(0) for each stream segment over an entire network.195

Note that these methods were designed and named by computer scientists, so “depth” in DFS196

and “breadth” in BFS do not refer to hydraulics or river geometry, but instead are jargon197

referring to the graph network characteristics.198

A DFS traversal (Cormen et al., 2001) for Q is shown in Algorithm 2. From each headwater199

node, the inflow boundary condition is propagated downstream by adding the value to the200

downstream node and including any lateral ql. For river networks, the DFS traversal is highly201

efficient and requires negligible computational time for river networks of 105 computational202

nodes (e.g. Liu and Hodges, 2014). Based on our experience, the DFS computational costs203

should be essentially trivial for even continental-scale systems of 107 nodes.204
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Figure 1: Propagation of flow rate Q at a junction.

After the steady Qi for each stream segment is computed, eq. (6) can be solved for the205

corresponding Ai. We discretize this equation with the Preissmann scheme, similar to the206

approach used for the unsteady Saint-Venant equation in Liu and Hodges (2014). The value207

and derivative for any term are approximated as:208

f(x, t) ' 1
2

(fj+1 + fj) (7)

∂

∂x
f(x, t) ' 1

∆x
(fj+1 − fj) (8)

where subscripts indicate a node in the discrete system. Using j + 1/2 to represent geometric209

data that is logically between nodes (i.e. roughness ñ and S0), eq. (6) becomes:210

2
∆x

[
(Qj+1)2

Aj+1
− (Qj)

2

Aj

]

+
g

∆x
(Aj+1 +Aj) (hj+1 − hj)− g [Aj+1 +Aj ]S0(j+1/2)

+gñ2
j+1/2

[
(Qj+1)2 Fj+1 + (Qj)

2
Fj

]
= 0 (9)

These nonlinear equations are similar to the unsteady discrete equations, except that Q for each211

computational node is known from the DFS traversal. Newton’s method is used to solve this212

system for A without linearization, similar to the approach in Liu and Hodges (2014). The SSM213

requires a starting guess for A to solve the steady-state problem. Herein we use a bisection214

method with the Chezy-Manning equation for normal depth conditions, discussed in Appendix215

A. The overall algorithm for SSM is illustrated in Algorithm 3.216
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Algorithm 2 DFS traversal for Q
1: procedure QTraversal

2: for all i do . initialization

3: Qi ← 0

4: end for

5: for each headwater node j with BC Qj(t) do

6: Qj ← Qj(t = 0)

7: k ← downstream node of node j

8: while k is not empty do

9: Qk ← Qk +Qj(t = 0)

10: k ← downstream node of node k

11: end while

12: end for

13: return

14: end procedure

Algorithm 3 Steady-Solution Method
1: procedure SteadySolution

2: Call QTraversal()

3: for all node j in network do . Initial guess of A

4: Call bisection routine BiSection(Qj)

5: end for

6: Solve steady version of dynamic eqn in eq. (9)

7: return

8: end procedure
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3 Computational Tests217

3.1 Overview218

The performance of PTM and SSM are examined with a series of test cases ranging from sim-219

ple uniform cross-sections over short river reaches to 15,000 km of a real river network. To220

demonstrate the robustness and performance of the SSM, we conduct tests from three perspec-221

tives: (i) effects of different cross-section geometries; (ii) scalability with an increasing number222

of computational nodes; and (iii) real-world river networks. Two different computers are used:223

the cross-section and scalability tests are run on a computer with 2.00GHz Intel Xeon D-1540224

CPU’s and 64GB of RAM, while the large network tests are run on a computer with 2.52GHz225

Intel i7-870 CPU’s and 8GB of RAM. In both cases Ubuntu Linux is the operating system and226

GNU C++ compiler is used.227

3.2 Effects of cross-section geometry228

Test cases for cross-section geometry effects were conducted for synthetic geometry of simple229

river reaches without tributaries. Cases included rectangular, parabolic, trapezoidal, and non-230

uniform cross-sections, with a range of channel lengths, widths, and computational nodes, as231

provided in Table 1.232

channel number of cross-section cross-section

test length computational shape type shape detail

case (km) nodes

Case 1 3.1 78 Uniform rectangular WB = 20 m

Case 2 0.2 6 Uniform trapezoidal WB = 1 m Ssw = 0.5

Case 3 0.3 6 Uniform trapezoidal WB = 0.1 m Ssw = 1.5

Case 4 5.6 71 Uniform trapezoidal WB = 10 m Ssw = 0.5

Case 5 10 167 Uniform quasi-parabolic f = 37.8

Case 6 10 1664 Surveyed bathymetry Unsymmetrical cross-section

Case 7 122 31 Surveyed bathymetry Unsymmetrical cross-section

Table 1: Cross-section geometry test cases. WB and Ssw represent bottom width and sidewall slope

respectively, f represents the focal length of parabolic shape.

3.3 Scalability233

To demonstrate the scalability as the number of computational nodes increases, we use the ge-234

ometry and flow conditions of Case 4 in Table 1 and generate synthetic test cases with increasing235
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numbers of nodes from a few hundred to over a million in the set: { 560, 2800, 5600, 11200,236

22400, 44800, 89600, 179200, 358400, 716800, 1433600 }.237

3.4 Large river networks238

To examine the robustness of PTM and SSM for more realistic conditions over both small and239

large scales, we use a section of Waller Creek (Texas, USA) as well as the entire watershed of the240

San Antonio and Guadalupe River basins (Texas, USA). The former is a small urban watershed241

for which dense cross-section survey data is available, whereas the latter is a large river basin242

that has been previously modeled with the RAPID Muskingum routing model (David et al.,243

2011) and the SPRNT Saint-Venant model (Liu and Hodges, 2014).244

The Waller Creek study includes two stream reaches and the catchment area illustrated in245

Fig. 2. The total stream length is 11.6 km, which drains an area of 14.3 km2. The layout of246

Waller Creek is shown in Fig 2(a), and parts of the bathymetry surveyed data from City of247

Austin is shown in Fig. 2(b) for clarity. Two different model geometries were considered, which248

are designated as WCA and WCB. For WCA the stream is discretized by 373 computational249

nodes based on separation of the surveyed cross-sections. WCA neglects the minor tributary of250

Waller Creek and includes the full complexity of the surveyed cross-sections shown in Fig. 2(b).251

In contrast, WCB includes both tributaries, but uses wider computational node separation with252

only 30 of the 373 surveyed cross-sections.253

To test the initial condition approach for a large river network, we use the San Antonio254

and Guadalupe River basins (Fig. 3), which have a combined total stream length of 12,728255

km (excluding some minor first-order segments). The model herein uses 63,777 computational256

nodes, 59,594 segments, and 2,643 junctions, but is otherwise similar to the model setup with257

1.3 × 105 nodes used in Liu and Hodges (2014). Although the unsteady SPRNT model is258

typically run by coupling with a land-surface model for headwater and lateral inflows, for the259

present steady-state tests we used a synthetic inflow data set for the headwater inflows. The260

synthetic flow at each headwater stream was computed based on a downstream peak flow rate261

distributed uniformly across all the headwater reaches. We used the peak flow rate recorded on262

the main stem of Guadalupe River at Victoria (Texas) on January 19th, 2010 by USGS gauge263

08176500. As this gauge does not include the San Antonio River flows, we divided the peak flow264

rate (453 m3s−1) by the total number of headwater streams in the Guadalupe River (815) to265

get a single inflow value that was applied to each headwater reach (0.55 m3s−1). The same flow266

rate was used for the 725 headwater reaches of the San Antonio River network. This approach267

ensures that there is flow in every branch in the river network.268

Following Liu and Hodges (2014), it is necessary to estimate the cross-section geometry for this269

river network as comprehensive survey data are not available. Because the geometry affects270
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Figure 2: (a) Waller Creek and catchment in Austin (Texas, USA) (b) Surveyed cross-sections

of main channel for Waller Creek (Texas). Only 149 of 327 cross-sections are shown for clarity.

Elevations are relative to mean sea level. Data courtesy of City of Austin.

both PTM and SSM solutions, we tested four different estimation approaches (Cases A, B,271

C, and D). Cases A uses synthetic trapezoidal cross-sections using the approach applied in272

Liu and Hodges (2014) based on Western et al. (1997). In this method, trapezoidal widths273

(W ) are computed from mean annual flows (Qm) from the NHDPlus dataset as W = αQ0.5
m274

with α = 1.5. For the side slope of trapezoidal cross section, an identical sidewall slope (45275

degrees) is used throughout the river network. Case B channels were similar to Case A, but276

included some minor changes to Manning’s n, inflow boundary conditions, and channel bottom277

slopes in reaches where instabilities occurred, which was necessary to provide convergence for278

the PTM (see §4.5). Case C channels were based on work of Santibanez (2015), who used USGS279

streamflow measurements in the San Antonio and Guadalupe River network along with the at-280

a-station hydraulic geometry approach (Rhodes, 1977) to find the best trapezoidal cross-section281

approximation for the drainage area. Using this approach, the bed width (b0) is an exponential282

function of cumulative drainage area (AD) as:283

b0 = γAλD (10)

where b0 is meters, AD is km2, and the coefficients are γ = 12.59 and λ = 0.382. The Santibanez284

(2015) approach provides reasonable values for trapezoidal channel sidewall slopes over most of285

the basin, but fails in many of the first-order streams with small drainage areas (< 25 km2)286
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where the computed sidewall slopes are near zero. For simplicity in the present test cases, a287

uniform value of 45 degrees is used for the sidewall slopes throughout the river network. Case D288

uses channel bathymetry data generated from Zheng (2016), which uses a Height Above Nearest289

Drainage (HAND) analysis (Nobre et al., 2011) applied to the National Elevation Dataset (NED)290

to provide an automated approach for estimating trapezoid-based composite cross-sections.291

Figure 3: San Antonio and Guadalupe River network, from NHDPlus V2 Flowline
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4 Results292

4.1 Comparison metrics293

The overall algorithm efficiency is evaluated by the number of Newton iterations required for294

convergence to steady-state. The number of Newton iterations reflects the difficulty in con-295

verging the nonlinear solution and is proportional to the simulation runtime. As this metric is296

independent of computer architecture it provides a universal measure of algorithm performance.297

For SSM we use the number of iterations to converge the A solution, which is the dominant298

computational cost (i.e. the non-iterative graph-traversal solution for Q is negligible in compar-299

ison). For PTM, we use the cumulative sum of Newton iterations for the (Q,A) solution over all300

pseudo-time steps. Where converged solutions of PTM and SSM both exist, comparisons (not301

shown) indicate the resulting (Q,A) steady-state results are identical within the convergence302

tolerance (ε = 10−6).303

4.2 Effects of cross-section geometry304

Table 2 provides a comparison of Newton iterations for the test cases of Table 1 for single reaches305

with different channel cross-sections. The SSM converges quickly across all cases, whereas the306

performance of the PTM is always substantially slower than the SSM. The performance of the307

PTM appears somewhat erratic, which is likely because the overall number of pseudo-time steps308

depends on how far the starting guess is from the converged answer and the size of the time step309

used in the PTM pseudo time march. The SSM approach is always faster, arguably because the310

update magnitude in each Newton iteration is not limited by a time step size.311

relative

test PTM SSM speed-up

case iterations iterations of SSM

Case 1 327 6 54×
Case 2 73 4 18×
Case 3 136 8 17×
Case 4 773 9 85×
Case 5 8634 76 113×
Case 6 13 765 4 3441×
Case 7 91 234 30 3041×

Table 2: Newton iterations required to achieve convergence for benchmark geometry test cases. The

converged results are identical for both methods.

By comparing the geometric data from Table 1 with the results in Table 2, it can be seen312
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that the largest discrepancies between PTM and SSM performance (Cases 6, 7) are with non-313

uniform cross-sections. In both of these the SSM performs O(103) times better, compared to314

O(10) to O(102) improvements for simple geometry. This result is consistent with the idea315

that the performance of PTM depends on how close the starting guess for {Q,A} is to the316

steady-state solution. With non-uniform cross-section geometry, the starting guess is generally317

a quite far from the steady-state condition as it is difficult to a priori estimate gradients of318

the water surface that match the nonlinear acceleration associated with cross-section variability.319

In contrast, the benchmark tests with simple cross-section geometry (Cases 1-5) show more320

modest speed-up by SSM, which is consistent with the steady-state solution for PTM with321

simple geometry being closer to the starting guess. For short reaches with simple geometry and322

only a few computational nodes(Case 2, 3) the speed-up by SSM is essentially irrelevant.323

4.3 Scalability324

Computing initial conditions using models with varying numbers of computational nodes for325

Case 4 in Table 1 provides the speed-up results shown in Fig. 4. These tests use simple trape-326

zoidal cross-sections and, consistent with the results above, the speed-up advantage of the SSM327

is relatively modest with less than 103 nodes. However, beyond this point, the effective speed-up328

with SSM is quite dramatic. It appears that the SSM method becomes more effective than PTM329

both with increasing complexity of the cross-sectional geometry and the increasing number of330

computational nodes.331
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Figure 4: Speed-up multiplier of SSM compared to PTM for Case 4 as a function of the number of

computational nodes.
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4.4 Waller Creek test cases332

The results of initial condition convergence for two Waller Creek simulations are shown in333

Table 3. The SSM method dramatically reduces the total number of iteration to convergence,334

which is also reflected in reducing the computer runtime by 99% and 92% for WCA and WCB,335

respectively. Although the absolute runtime for this small system is trivial by either PTM336

or SSM, the disparity provides insight into the performance that is confirmed with the more337

complicated river network, discussed below.338

pseudo time-marching steady-solution relative PTM SSM

configuration iterations (PTM) iterations (SSM) speed-up of SSM runtime runtime

WCA 2900 23 130× 1.570 sec 0.011 sec

WCB 890 13 70× 0.037 sec 0.003 sec

Table 3: Total Newton’s iterations required to achieve convergence of the Waller Creek Creek test case.
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4.5 San Antonio and Guadalupe River basins339

The results of the full river network computations are provided in Table 4, which shows the SSM340

was successful and used a relatively small number of Newton iterations despite the complexity341

of the system. However, three of the PTM solutions could not be stabilized; that is, the method342

diverged from any selected starting condition and finally caused convergence failure. Indeed, it343

was the inability to converge PTM with configurations A, C, and D that let to the development344

of configuration B as a modification of A. To obtain the geometry for B, we identified reaches345

where instabilities developed in PTM and made minor ad hoc adjustments for Manning’s n,346

inflow boundary conditions, and channel bottom slopes until we achieved convergence. Note347

that the modeler’s time to tune the system for the PTM method to successfully converge is not348

included in the comparisons of Table 4.349

The convergence behavior of the PTM is shown in Fig. 5. It can be seen that for several350

hundred time marching steps the solution was oscillating rather dramatically, but eventually351

settled down to a slow, smooth behavior. We believe this is evidence of the PTM trying to352

overcome inconsistencies between the {Q(t0), A(t0)} starting conditions and the time-invariant353

boundary conditions in the network. Note that PTM for B was not converged to the same354

ε = 10−6 tolerance used for SSM. Instead, the solution was manually terminated after 9+355

hours, when the convergence norm reached 1.6 × 10−4 and was sufficiently smooth so that it356

was clear that the method would eventually converge.357

PTM Newton SSM Newton relative PTM SSM

configuration iterations iterations speed-up of SSM runtime* runtime

A convergence failure 61 – – 3 sec

B 192,527 51 > 3775× 9 hr 5 min 8 sec 3 sec

C convergence failure 29 – – 6 sec

D convergence failure 46 – – 14 sec

Table 4: Total Newton’s iterations required to achieve convergence for four configurations of the San Antonio

and Guadalupe River network. *The PTM method was terminated after the L2 convergence norm reached

1.6× 10−4 whereas the SSM was converged to the predefined tolerance of 10−6
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Figure 5: Convergence of the L2 norm between consecutive pseudo-time marching solutions for

the PTM with configuration B of the San Antonio and Guadalupe River network. Note the above

uses the number of time-marching steps as compared to the larger number of Newton iterations

provided in Table 4.
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5 Discussion358

5.1 Model performance359

In general, the PTM performed poorly except on very simple systems. As the river network360

complexity increases the PTM changes from being somewhat slower than SSM to being non-361

convergent. Indeed, the PTM has only one advantage over the SSM in providing initial con-362

ditions to an unsteady SVE solver: specifically, no new code is needed as PTM uses the same363

unsteady SVE code. However, using PTM for large systems requires a frustrating trial and error364

approach to tuning the system to obtain convergence. In contrast, the SSM provides a rapid365

solution to the initial condition problem because Q is computed from simple graph traversal366

(once through the network), and the subsequent computation of A is “local” (in the sense that367

in order to correct A, there is no long distance coupling between distant computational nodes).368

Note that in contrast to PTM, the SSM does not require the modeler to select a set of starting369

conditions. Thus, different modelers will produce exactly the same Q(0) and A(0) using the370

SSM on identical geometry, which may not be the case for PTM if modelers must resort to371

model tuning to obtain convergence.372

Herein we only tested two methods for initial conditions, both based on finding the steady-373

state {Q,A} that are consistent with the boundary conditions. However, we can also argue that374

the cold start and synoptic start (see §1.3) would likely perform as bad or worse than PTM. That375

the cold start would perform poorly follows from the fact that it has the exact same problem376

as the PTM (converging over time from inconsistent starting data), but increases the difficulty377

by trying to converge to the unsteady boundary conditions. A cold start effectively turns the378

initial condition problem into a spin-up problem. For a cold start model performing similar to379

the PTM for the San Antonio and Guadalupe River network, we can expect spin-up to require380

more than 104 time-steps of the unsteady solver.381

Although a synoptic start might perform better than PTM or a cold start, it seems likely382

that any approach to interpolating/extrapolating sparse observational data across a larger river383

network will necessarily result in inconsistencies between the initial {Q,A} and the boundary384

conditions. If such inconsistencies result in model instabilities (a difficult thing to predict), the385

overall model spin-up time could be extensive. The key problem for the synoptic start is that386

it requires judgment as to how to best interpolate/extrapolate observational data for initial387

conditions, which is contrasted to the SSM approach of simply using the actual Q(0) boundary388

conditions and the steady solver without any further choices by the modeler.389
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5.2 Effects on spin-up390

As alluded to in the Introduction, obtaining an effective model initial condition is only one step391

in the initialization of an unsteady model. A second step is understanding at what time the392

model results are independent of any errors or inconsistencies in the initial conditions – i.e. the393

spin-up time. Some model spin-up time is generally unavoidable as we never have exactly394

the correct spatially-distributed initial conditions that are exactly consistent with spatially-395

distributed boundary conditions. In effect, eliminating spin-up time requires a set of initial396

conditions that are not only consistent with the boundary conditions at t = 0, but also consistent397

with the boundary conditions for tm < t < 0, where tm represents the system “memory” (or the398

time interval to wash out a transient impulse).399

As an illustration of the scale of the spin-up problem compared to the initial condition400

problem, we have run the SPRNT unsteady SVE model (Liu and Hodges, 2014) for the San401

Antonio and Guadalupe River network using 30000+ data points of unsteady lateral inflows for402

14 days in January 2010. These boundary condition data were generated from NLDAS. The403

initial conditions were generated using SSM, as described above. The initial conditions were then404

perturbed by ±20% in every first-order reach, which provides two slightly inconsistent initial405

condition data sets to compare to the baseline. In Figure 6, the positive and negative perturbed406

initial condition cases reach to model equilibrium state (0.001% threshold value) at 152 and 154407

hours of simulation time, respectively. Thus, 150 hours represents the time for errors in first-408

order streams to be diluted in the higher-order (larger) river branches. This can be considered a409

reasonable estimate of spin-up time for this model of this system given a reasonably consistent410

set of initial conditions. After 3.8 seconds of CPU time to compute initial conditions using SSM,411

it only takes an additional 5 minutes of CPU time to complete the spin-up with the SPRNT412

unsteady model. This is two orders of magnitude faster than the 9+ hours of CPU time required413

just to compute initial conditions using PTM.414

415
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Figure 6: Spin-up for San Antonio and Guadalupe River network with the SPRNT unsteady SVE

model initialized using the SSM approach. The positive and negative 20% perturbations are to the

Q initial conditions in first-order reaches.
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6 Conclusion416

Two methods to compute flow (Q) and cross-sectional area (A) initial conditions for an unsteady417

Saint-Venant river network model have been presented. Both approaches use the steady-state418

solution for t = 0, which provides initial conditions that are smooth and globally consistent419

with the boundary conditions for the model start time. The Pseudo Time-Marching Method420

(PTM) is likely similar to undocumented approaches previously used; i.e. application of an421

unsteady model with constant boundary conditions to achieve a steady solution consistent with422

initial land surface inflows. For large river networks, the PTM method is slow and inconsistent,423

arguably depending on the quality of the first guesses for Q and A and the size of the time step424

required for a stable pseudo-time march. A new Steady-Solution Method (SSM) is developed to425

address these issues. The SSM computes the initial condition Q in each reach from the inflow426

boundary conditions of the entire network at t = 0 by applying a mass-conservative graph427

traversal technique. The initial condition A in each reach is found from the solution of the428

steady-state 1D momentum equation with known Q. The first-guess problem for A is solved429

as a normal-flow problem with the Chezy-Manning equation and the Q from graph traversal.430

Although SSM requires writing an additional numerical solver rather than relying on an existing431

unsteady solver (as used in PTM) our numerical experiments show that SSM is more robust432

and consistently faster than PTM. Code for both initial condition solvers is publicly available433

at GitHub (Liu, 2014).434
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8 Notation438

A cross-sectional area (m2)439

b0 trapezoidal channel bed width (m)440

b1 trapezoidal channel sidewall slope441

DA drainage Area (mile2)442

g gravitational acceleration (ms−2)443

f generic function444

F equivalent friction geometry (m−10/3)445

h depth (m)446

ñ Manning’s roughness (m−1/3s)447
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P wetted perimeter (m)448

Q volumetric flow rate (m3s−1)449

ql flow rate per unit length through channel sides (m2s−1)450

r residual function451

Rh hydraulic radius (m)452

S0 channel bottom slope453

Sf channel friction slope454

S Strahler order455

t time (s)456

W channel width (m)457

x along-channel spatial coordinate458

Appendix A: Starting conditions459

PTM requires starting conditions (or a first guess) of {Q(t0), A(t0)} for unsteady solution of460

eqs. (1) and (2) whereas SSM needs a first guess only for A in the solution of eq. (6). As the461

Q solution by the graph traversal method for eq. (5) does not require any starting conditions,462

it follows that for the PTM the best choice for Q(t0) is the same Q developed by simple graph463

traversal approach used for SSM (i.e. Alg. 2). To obtain starting conditions for A in SSM or464

A(t0) in PTM, a reasonable guess is the A associated with the “normal depth”, denoted An465

for the starting Q. The normal depth is obtained from the Chezy-Manning equation solved for466

normal flow conditions, i.e.467

Q =
1
ñ
AnR

2/3
h S

1/2
0 (11)

The hydraulic radius at normal depth requires the area at normal depth and the wetted perimeter468

at normal depth, Rh(n) = An/Pn, which implies Chezy-Manning can be written as:469

An =

(
ñQ

S
1/2
0

)3/5

P 2/5
n (12)

Thus an initial guess for A can be computed for known Q, ñ, and S0, where P = P (A) is a470

known piece-wise continuous function based on river bathymetric data. Since P (A) is a nonlinear471

function, eq. (12) must be solved with a nonlinear solution method. A simple bi-section method472

can be used following Algorithm 4 with the residual function r(A) defined as:473

r(A) =

(
ñQ

S
1/2
0

)3/5

P (A)2/5 −A = 0 (13)
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Note that failure to converge for Algorithm 4 is not necessarily fatal; unconverged results are474

likely to be adequate as they are simply the initial guess for iterative solution by PTM or SSM.475

As a further simplification, it seems likely that the P (A) in eq. (12) could be approximated476

using a simple rectangular cross-section, P (A) = W +2A/W , where known channel widths (W )477

are used. This simplification is valuable in continental-scale river network simulations, where478

adequate river geometric data throughout a network cannot be guaranteed (Hodges, 2013).479

Algorithm 4 Bi-Section Method
1: procedure BiSection(Q, n,S0,Nmax, ε) . ε: tolerance

2: Au ← 0.01 . Search for upper bound

3: repeat

4: Au ← 2Au

5: Evaluate r(A) in eq. (13)

6: until r > 0

7: Al ← 0

8: for i = 1 to Nmax do . Bisection method

9: rl ← r(Al)

10: ru ← r(Au)

11: Am ← (Au +Al)/2

12: if |ru − rl| < ε then return Am

13: else

14: rm ← r(Am)

15: if rm > 0 then

16: Au ← Am

17: else

18: Al ← Am

19: end if

20: end if

21: end for

22: return Am

23: end procedure
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Nobre, A., Cuartas, L., Hodnett, M., Rennó, C., Rodrigues, G., Silveira, A., Waterloo, M., and516

Saleska, S. (2011). Height above the nearest drainage – a hydrologically relevant new terrain517

model. Journal of Hydrology, 404(1–2):13 – 29.518

Ponce, V. M., Simons, D. B., and Li, R.-M. (1978). Applicability of kinematic and diffusion519

models. Journal of the Hydraulics Division, 104(3):353–360.520

Pramanik, N., Panda, R. K., and Sen, D. (2010). One dimensional hydrodynamic modeling of521

river flow using dem extracted river cross-sections. Water Resources Management, 24(5):835–522

852.523

Preissmann, A. (1961). Propagation des intumescences dans les canaux et rivieres. In First524

Congress French Assoc. for Computation.525

Preissmann, A. and Cunge, J. (1961). Calcul du mascaret sur machine électronique. La Houille526
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